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Continuous Selections of Solution Sets
of Lipschitzian Quantum Stochastic
Differential Inclusions

E. O. Ayoola1,2

A multifunction associated with the set of solutions of Lipschitzian quantum stochas-
tic differential inclusion (QSDI) admits a selection continuous from some subsets of
complex numbers to the space of the matrix elements of adapted weakly absolutely
continuous quantum stochastic processes. In particular, the solution set map as well as
the reachable set of the QSDI admit some continuous representations.
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1. INTRODUCTION

This paper is concerned with the problems of continuous selections of mul-
tivalued solution maps of quantum stochastic differential inclusions in integral
form, given by

X (t) ∈ a +
∫ t

0
E(s, X (s))d ∧π (s) + F(s, X (s)) d A f (s)

+G(s, X (s)) d A+
g (s) + H (s, X (s)) ds, almost all t ∈ [0, T ].

(1.1)

QSDI (1.1) is understood in the framework of the Hudson and Parthasarathy (1984)
formulation of Boson quantum stochastic calculus. In the notations and definitions
of various spaces of stochastic processes introduced in the work of Ekhaguere
(1992), the coefficients E , F, G, H, lie in L2

loc([0, T ] × Ã)mvs, where Ã is a lo-
cally convex space and (0, a) ∈ [0, T ] × Ã is a fixed point. The maps f, g, π

appearing in (1.1) lie in some suitable function spaces. The integrators ∧π , A+
g

and A f are the gauge, creation and annihilation processes associated with the
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basic field operators of quantum field theory. As in our previous works (Ayoola,
2001, 2003a,b) concerning some approximation of the reachable sets and solutions
of QSDI (1.1), we consider the equivalent form of (1.1) given by

d

dt
〈η, X (t)ξ〉 ∈ P(t , X (t))(η, ξ )

X (0) = a, t ∈ [0, T ]. (1.2)

Inclusion (1.2) is a nonclassical ordinary differential inclusion and the map
(η, ξ ) → P(t , x)(η, ξ ) is a multivalued sesquilinear form on (D⊗E)2 for (t , x) ∈
[0, T ] × Ã. We refer the reader to the works of Ekhaguere (1992, 1995, 1996)
for the explicit forms of the map and the existence results for solutions of QSDI
(1.1) of Lipschitz, hypermaximal monotone and of evolution types. We follow
the fundamental concepts and structures as in the references by employing the
locally convex space Ã of noncommutative stochastic processes whose topology
is generated by the family of seminorms {‖x‖ηξ = |〈η, xξ〉|, x ∈ A, η, ξ ∈ D⊗E}.
Here, as usual, the underlying elements of Ã consists of linear maps from D⊗E into
R ⊗ �(L2

γ (R+)) having domains of their adjoints containing D⊗E. In particular,
the spaces L P

loc(Ã), L∞
γ ,loc(R+), L P

loc(I × Ã) for a fixed Hilbert space γ are being
adopted as in the above references.

In what follows, we consider QSDI (1.2) where the map x → P(t , x)(η, ξ )
is Lipschitzian with values that are closed (not necessarily convex nor bounded)
subsets of the field of complex numbers. The point a ranges in a subset A of Ã
such that the set A(η, ξ ) := {〈η, aξ〉 : a ∈ A} is compact in C.

We denote by S(T )(a) the map that assigns to each point a ∈ A, the set of
solutions of QSDI (1.2) and prove a continuous selection theorem from the map
S(T )(a)(η, ξ ) where

S(T )(a)(η, ξ ) = {〈η, �(·)ξ〉/� ∈ S(T )(a)
}
.

An important consequence of our main result is that the set map 〈η, aξ〉 →
S(T )(a)(η, ξ ) can be continuously represented in the form

g(〈η, aξ〉, U) = S(T )(a)(η, ξ ).

Similar result holds for the case of the map from 〈η, aξ〉 to the set R(T )(a)(η, ξ ),
where

R(T )(a)(η, ξ ) = {〈η, �(T )ξ〉/�(T ) ∈ R(T )(a)
}

is the set of complex numbers associated with the reachable set

R(T )(a) = {
�(T )/� ∈ S(T )(a)

}
of QSDI (1.1) at time T (see our previous work, Ayoola (2003b) for details).

Our results in this work are extensions of the results of Cellina and Ornelas
(1992) to the present noncommutative quantum setting involving inclusions in
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certain locally convex spaces. We adapt the arguments employed in the reference
to conform with our noncommutative stochastic analysis.

Problems of continuous selections of classical differential inclusions have
attracted considerable attention in the literature. Some selection results at the clas-
sical setting can be found in the works of Cellina (1988), Aubin and Cellina (1984),
Fryszkowski (1983), Antosiewicz and Cellina (1975), Colombo et al. (1991) and
the book by Repovs and Semenov (1998). As shown in the work of Cellina and
Ornelas (1992) selection results have been used to show that the solution set-map
and the attainable set admit some continuous parameterizations. Broucke and Ara-
postathis (2001) have established the existence of a continuous selection from
the set of solutions that interpolates a given finite set of trajectories of Lipschitz
differential inclusion.

The rest of the paper is organized as follows: In Section 2, we outline some
fundamental definitions, notations and results concerning the selection results.
Section 3 is devoted to the establishment of the main results of the paper.

2. NOTATIONS AND PRELIMINARY RESULTS

We shall employ the following notations in what follows. IfN is a topological
space, then clos(N ) (resp. comp(N ) ) denotes the collection of all nonempty closed
(resp. compact ) subsets ofN . We shall employ the Hausdorff topology on clos(Ã)
as explained in Ekhaguere (1992).

We denote by ρ(A, B) the Hausdorff distance between the sets A, B in
clos(C). The distance d(x , A) of a point x from a set A ∈ clos(C) is defined by

d(x , A) = inf{|x − a| : a ∈ A}.
We denote by I , the interval [0, T ] and the characteristic function of a subset E of
I by χE .

As explained in Ekhaguere (1992), we consider the space wac(Ã) the com-
pletion of the locally convex space (Ad(Ã)wac, τwac) where the topology τwac

is generated by the family of seminorms {| · |ηξ : η, ξ ∈ D⊗E} defined for each
� ∈ Ad(Ã)wac by

|�|ηξ = ‖�(0)‖ηξ +
∫ T

0

∣∣∣∣ d

ds
〈η, �(s)ξ〉

∣∣∣∣ ds.

Associated with wac(Ã), we define for arbitrary η, ξ ∈ D⊗E, the space of complex
valued functions

wac(Ã)(η, ξ ) = {〈η, �(·)ξ〉/� ∈ wac(Ã)}.
We remark that each element �ηξ (·) := 〈η, �(·)ξ〉 of wac(Ã)(η, ξ ) is an absolutely
continuous complex valued function on the interval [0, T ]. We assume that A is a



2044 Ayoola

subset of Ã such that the set of complex numbers

A(η, ξ ) = {〈η, aξ〉/a ∈ A}
is compact in C with diameter Dηξ = supx , y∈A(η,ξ ) |x − y|.

Furthermore, the map (t , x) → P(t , x)(η, ξ ) appearing in (1.2) is assumed to
satisfy the following conditions.

S(i) The values of P(t , x)(η, ξ ) are nonempty closed, subsets of the field C

of complex numbers.
S(i i) The map t → P(t , x)(η, ξ ) is measurable.
S(i i i) There exists a map K P

ηξ : [0, T ] → R+ lying in L1
loc([0, T ]) such that

ρ(P(t , x)(η, ξ ), P(t , y)(η, ξ )) ≤ K P
ηξ (t)‖x − y‖ηξ

for t ∈ [0, T ], and for each pair x , y ∈ Ã.
S(iv) There exists a stochastic process Y : [0, T ] → Ã lying in Ad(Ã)wac such

that the map

t → d

(
d

dt
〈η, Y (t)ξ〉, P(t , Y (t))(η, ξ )

)

lies in L1
loc([0, T ]).

From the result of Ekhaguere (1992), it is known that under the conditions
S(i) to S(iv), QSDI (1.1) admits at least one adapted weakly absolutely continuous
solution for each a ∈ A. We denote the set of all such solutions, with the topology
of wac(Ã) by S(T )(a).

To prove our main result in Section 3, we need an important notion of partition
of unity.

Definition 2.1. Let A be a subset of Ã such that for arbitrary elements η, ξ ∈
D ⊗ E, the set A(η, ξ ) is compact in the field of complex numbers.

Let {
i }i∈J be an open covering for A(η, ξ ) with a finite open subcover-
ing {
i }, i = 1, 2, · · · m. A family of functions {Pi (·)}, i = 1, 2 · · · m defined on
A(η, ξ ) is called a Lipschitzian partition of unity subordinated to the finite sub-
covering if:

(i) Pi (·) is Lipschitzian for all i = 1, 2 · · · m. That is, there exists constant
Lηξ such that for any pair aηξ , a′

ηξ ∈ A(η, ξ ), we have

|Pi (aηξ ) − Pi (a
′
ηξ )| ≤ Lηξ |aηξ − a′

ηξ |.
(ii) Pi (aηξ ) > 0 for aηξ ∈ 
i ∩ A(η, ξ ) and Pi (aηξ ) = 0 for aηξ ∈ A(η, ξ )\


i .

(iii) For each aηξ ∈ A(η, ξ ),
m∑

i=1

Pi (aηξ ) = 1.



Continuous Selections of Solution Sets 2045

Lemma 2.1. Let A ⊆ Ã such that for arbitrary η, ξ ∈ D ⊗ E, the set A(η, ξ ) is
compact in C. Then there exists a Lipschitzian partition of unity subordinated to
any finite subcovering of an open covering for the set A(η, ξ ).

Proof: Let {
i }, i = 1, 2 · · · m be a finite open subcovering of an open covering
{
i }i∈J of A(η, ξ ) in the field of complex numbers. First, by Lemma 2.1 in Smirnov
(2002) for Q ⊆ C, the map q : C → R+ defined by q(x) = d(x , Q) satisfies for
x1, x2 ∈ C

|q(x1) − q(x2)| ≤ |x1 − x2|.

For i = 1, 2 · · · m, define the functions qi : A(η, ξ ) → R+ by

qi (aηξ ) = d(aηξ , A(η, ξ )\
i )

and functions Pi : A(η, ξ ) → R+ by

Pi (aηξ ) = qi (aηξ )∑m
j=1 q j (aηξ )

(2.1)

For at least one j ∈ {1, 2 · · · m}, aηξ ∈ 
 j . Therefore
m∑

j=1

q j (aηξ ) > 0.

Consequently, (2.1) is well defined.

Moreover, for each aηξ ∈ A(η, ξ ),
m∑

i=1

Pi (aηξ ) = 1 and Pi (aηξ ) > 0 for aηξ ∈

i ∩ (A(η, ξ )), and Pi (aηξ ) = 0 for aηξ ∈ A(η, ξ )\
i .

Next we show that each function Pi is Lipschitzian on A(η, ξ ).
Since the set A(η, ξ ) is compact, there exist numbers Mηξ , mηξ > 0 such that

mηξ <
m∑

j=1

q j (aηξ ) < Mηξ

for any element aηξ ∈ A(η, ξ ).
For any pair aηξ , a′

ηξ ∈ A(η, ξ ), we have

|Pi (aηξ ) − Pi (a
′
ηξ )| =

∣∣qi (a′
ηξ )

∑m
j=1 q j (aηξ ) − qi (aηξ )

∑m
j=1 q j (a′

ηξ )
∣∣∑m

j=1 q j (aηξ )
∑m

j=1 q j (a′
ηξ )

≤
∣∣qi (a′

ηξ )
∑m

j=1 q j (aηξ ) − qi (aηξ )
∑m

j=1 q j (a′
ηξ )

∣∣
m2

ηξ

≤ 1

m2
ηξ

m∑
j=1

(|qi (a
′
ηξ )q j (aηξ ) − qi (aηξ )q j (aηξ )|
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+ |qi (aηξ )q j (aηξ ) − qi (aηξ )q j (a
′
ηξ )|)

≤ 1

m2
ηξ

(
m∑

j=1

q j (aηξ )|aηξ − a′
ηξ | + qi (aηξ )

m∑
j=1

|aηξ − a′
ηξ |

)

≤ (1 + m)Mηξ

m2
ηξ

|aηξ − a′
ηξ |,

where we have used the inequality

|qi (a
′
ηξ ) − qi (aηξ )| ≤ |a′

ηξ − aηξ |
satisfied by each function qi (·), i = 1, 2 · · · m on A(η, ξ ).

Thus Pi (·) is Lipschitzian with Lipschitz constant Lηξ = (1+m)Mηξ

m2
ηξ

. �

Next, we present a proposition which we shall frequently use in the proof of
our selection theorem. We obtained the result by adapting its classical analogue
presented in Cellina and Ornelas (1992) to the present noncommutative quantum
setting.

Proposition 2.2. Let V0, V1, · · · Vm be stochastic processes in L1
loc(Ã) and for any

pair of points η, ξ ∈ D ⊗ E, let {I j (aηξ )} be a partition of the interval I = [0, T ]
into a finite number of subintervals with endpoints depending continuously on the
point aηξ := 〈η, aξ〉, a ∈ A.

Consider the map

W : aηξ → aηξ +
∫ t

0

m∑
j=0

χI j (aηξ )(s)〈η, Vj (s)ξ〉ds.

Then there exists a map Rηξ (t) lying in L1
loc([0, T ]) such that for every ε > 0, there

exists ∂ > 0 such that |aηξ − a′
ηξ | < ∂ implies that∣∣∣∣ d

dt
W (aηξ )(t) − d

dt
W (a′

ηξ )(t)

∣∣∣∣ ≤ Rηξ (t)χE (t),

for some set E ⊆ I with measure µ(E) < ε.

Proof: First, we assume the hypothesis of Lemma 2.1. By the conclusion of the
lemma, there exists a Lipschitzian partition of unity Pj (·) subordinated to a finite
open subcovering of A(η, ξ ).

Let ε > 0 be given. Define for each aηξ in A(η, ξ ),

t0(aηξ ) = 0, t j (aηξ ) = t j−1(aηξ ) + T Pj (aηξ ), 1 ≤ j ≤ m.

Then for each j , t j is continuous on A(η, ξ ). This can be shown as follows:
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For any pair aηξ , a′
ηξ ∈ A(η, ξ ) we have

|t j (aηξ ) − t j (a
′
ηξ )| ≤ |t j−1(aηξ ) − t j−1(a′

ηξ )| + T |Pj (aηξ ) − Pj (a
′
ηξ )|≤ |t j−1(aηξ )

− t j−1(a′
ηξ )| + T Lηξ |aηξ − a′

ηξ |,
since each Pj (·) is Lipschitzian.

At the j th iteration, we have

|t j (aηξ ) − t j (a
′
ηξ )| ≤ jT Lηξ |aηξ − a′

ηξ |.
Putting δ j = ε

jT Lηξ
, then whenever |aηξ − a′

ηξ | ≤ δ j , we have

|t j (aηξ ) − t j (a
′
ηξ )| ≤ ε.

Now we define the intervals I j (aηξ ) = [t j−1(aηξ ), t j (aηξ )) for j = 0, 1, · · · m.
Thus

I = [0, T ] =
m⋃

j=0

I j (aηξ ).

We observe that for any two points aηξ , a′
ηξ ∈ A(η, ξ ), we have the following

estimate∣∣∣∣ d

dt
W (aηξ )(t) − d

dt
W (a′

ηξ )(t)

∣∣∣∣ ≤
m∑

j=0

χI j (aηξ )�I j (a′
ηξ )(t)(t)‖Vj (t)‖ηξ

=
m∑

j=0

χI j (aηξ )�I j (a′
ηξ )(t)Rηξ (t) (2.2)

where Rηξ (t) = max j ‖Vj (t)‖ηξ , for each t ∈ [0, T ] and

I j (aηξ )�I j (a
′
ηξ ) = [I j (aηξ ) ∩ (I j (aηξ )\I j (a

′
ηξ ))]⋃

[(I j (a
′
ηξ )\I j (aηξ )) ∩ I j (a

′
ηξ )].

We remark that the family of sets {I j (aηξ )�I j (a′
ηξ )} are pairwise disjoint. Putting

E = ⋃m
j=0 I j (aηξ )�I j (a′

ηξ ), then from (2.2),∣∣∣∣ d

dt
W (aηξ )(t) − d

dt
W (a′

ηξ )(t)

∣∣∣∣ ≤ χE (t)Rηξ (t)

where by the properties of characteristic functions (see for example, Halmos,
1988),

χE (t) =
m∑

j=1

χI j (aηξ )�I j (a′
ηξ )(t).
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Since the set A(η, ξ ) is compact in C, then the family of functions {t j } is a uniformly
equicontinuous family of real valued functions. Thus for every ε > 0, there exists
δ > 0 such that for every aηξ , a′

ηξ ∈ A(η, ξ ) satisfying

|aηξ − a′
ηξ | < δ,

then

|t j (aηξ ) − t j (a
′
ηξ )| <

ε

2(m + 1)
.

Hence,

µ(I j (aηξ )�I j (a
′
ηξ )) ≤ 2|t j (aηξ ) − t j (a

′
ηξ )| ≤ ε

m + 1
.

Consequently,

µ(E) =
m∑

j=0

µ
(
I j (aηξ )�I j (a

′
ηξ )

)
< ε.

�

3. MAIN RESULTS

We present in this section, our main results. In what follows, for points
ak ∈ A, k = 0, 1, 2 · · ·, and �k ∈ S(T )(ak), we set aηξ ,k = 〈η, akξ〉 and �ηξ ,k(·) =
〈η, �k(·)ξ〉.

Our method of proof for the main results below, is an adaptation of the
arguments employed in Cellina and Ornelas (1992) concerning similar result for
classical differential inclusions. In addition, we employ successive approximations
similar to what we have in Ekhaguere (1992) for proving the existence of solutions
of quantum stochastic differential inclusion (1.1).

Theorem 3.1. Assume that the map (t , x) → P(t , x)(η, ξ ) satisfies conditions
S(i) − S(iv).

Let �0 ∈ S(T )(a0) for a fixed point a0 ∈ A. Then there exists a continuous
map W : A(η, ξ ) → wac(Ã)(η, ξ ), a selection from S(T )(a)(η, ξ ) such that

W (aηξ ,0) = �ηξ ,0.

Proof: Since �0 ∈ S(T )(a0), then �0 ∈ Ad(Ã)wac. By the properties of the so-
lution established in Ekhaguere (1992), there exists a stochastic process V0 :
[0, T ] → Ã lying in L1

loc(Ã) such that for almost all t ∈ [0, T ],

�0(t) = a0 +
∫ t

0
V0(s)ds (3.1)
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and for arbitrary η, ξ ∈ D ⊗ E, we have

〈η, V0(s)ξ〉 = d

ds
〈η, �0(s)ξ〉 ∈ P(s, �0(s))(η, ξ ), s ∈ [0, T ].

Now for arbitrary element a ∈ A, set

Y : A → wac(Ã)

to be

Y (a)(t) = a +
∫ t

0
V0(s)ds.

Associated with the map Y , we set the map

W : A(η, ξ ) → wac(Ã)(η, ξ )

to be

W (aηξ )(t) = aηξ +
∫ t

0
〈η, V0(s)ξ〉ds.

We remark that the map W is well defined and continuous on A(η, ξ ) and that

d

dt
W (aηξ )(t) = 〈η, V0(t)ξ〉.

Furthermore,

d

(
d

dt
W (aηξ )(t), P(t , Y (a)(t))(η, ξ )

)

= d

(
d

dt
〈η, �0(t)ξ〉, P(t , Y (a)(t))(η, ξ )

)
≤ ρ (P(t , Y (a0)(t))(η, ξ ), P(t , Y (a)(t))(η, ξ ))

≤ K P
ηξ (t)‖Y (a0)(t) − Y (a)(t)‖ηξ

= K P
ηξ (t)‖a0 − a‖ηξ .

Since the map t → P(t , Y (a)(t))(η, ξ ) is measurable with closed values in the
complex field, then by Theorem 2, Chapter 1, Section 14 in the book of Aubin and
Cellina (1984) (see also Ekhaguere, 1992), we can choose U0(a)(t)(η, ξ ) to be a
measurable selection from P(t , Y (a)(t))(η, ξ ) such that∣∣∣∣ d

dt
W (aηξ )(t) − U0(a)(t)(η, ξ )

∣∣∣∣ = d

(
d

dt
W (aηξ )(t), P(t , Y (a)(t))(η, ξ )

)

≤ K P
ηξ (t)‖a0 − a‖ηξ . (3.2)
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As the map (η, ξ ) → U0(a)(t)(η, ξ ) is a sesquilinear form on D⊗E for almost
all t ∈ [0, T ] and by the adaptedness of Y (a), there exists an adapted stochastic
process U0(a) : [0, T ] → Ã such that

〈η, U0(a)(t)ξ〉 = U0(a)(t)(η, ξ ).

By Equation (3.2), the process U0(a) lies in L1
loc(Ã), for any a ∈ A. This assertion

follows from the fact that from (3.2), we have

‖V0(t) − U0(a)(t)‖ηξ ≤ K P
ηξ (t)‖a0 − a‖ηξ

where V0 ∈ L1
loc(Ã).

Next we fix some positive real number θ and define for any aηξ ∈ A(η, ξ ),

δ(aηξ ) = min

{
2−3θ ,

|aηξ − aηξ ,0|
2

}
aηξ �= aηξ ,0

and

δ(aηξ ,0) = 2−3θ.

Next, we define the open balls

B(aηξ , δ(aηξ )) = {x ∈ C/|x − aηξ | < δ}.
Then the family of open sets {B(aηξ , δ(aηξ )), aηξ ∈ A(η, ξ )} covers the set

A(η, ξ ).
By the compactness of A(η, ξ ) let B(aηξ , j , δ(aηξ , j )), j = 0, 1, 2 · · · m be a

finite open subcovering . We notice that the point aηξ ,0 belongs only to the set
B(aηξ ,0, δ(aηξ ,0)).

Let Pj (·), j = 0, 1, 2 · · · m be a Lipschitzian partition of unity subordinate to
the covering. We define the following intervals:

I0(aηξ ) = [0, T P0(aηξ )]

and for j > 0,

I j (aηξ ) = [T (P0(aηξ ) + · · · + Pj−1(aηξ )), T (P0(aηξ ) + · · · Pj (aηξ ))].

Next we set

Y1(a)(t) = a +
∫ t

0

m∑
j=0

χI j (aηξ )(s)U0(a j )(s)ds (3.3)

and

W1(aηξ )(t) = aηξ +
∫ t

0

m∑
j=0

χI j (aηξ )(s)〈η, U0(a j )(s)ξ〉ds. (3.4)



Continuous Selections of Solution Sets 2051

By Proposition (2.1), the map W1 : A(η, ξ ) → wac(Ã)(η, ξ ) is continuous. More-
over, since aηξ ,0 belongs only to the set B(aηξ ,0, δ(aηξ ,0)), P0(aηξ ,0) = 1 and there-
fore we have I0(aηξ ,0) = [0, T ]. SinceχI j (aηξ ,0)U0(a j )(s) = 0, j �= 0, we have from
(3.3) and (3.4),

Y1(a0)(t) = a0 +
∫ t

0
U0(a0)(s)ds

and

W1(aηξ ,0)(t) = aηξ ,0 +
∫ t

0
〈η, U0(a0)(s)ξ〉ds.

But by (3.2), ∣∣∣∣ d

dt
W (aηξ ,0)(t) − 〈η, U0(a0)(t)ξ〉

∣∣∣∣ = 0

That is

|〈η, (V0(t) − U0(a0)(t))ξ〉| = 0

holds for arbitrary η, ξ ∈ D ⊗ E.
Hence,

V0(t) = U0(a0)(t), t ∈ [0, T ].

Therefore by (3.1)

Y1(a0)(t) = �0(t)

and

W1(aηξ ,0)(t) = �ηξ ,0(t) (3.5)

Next we have by (3.2)∫ t

0

∣∣∣∣ d

ds
W1(aηξ )(s) − d

ds
W (aηξ )(s)

∣∣∣∣ ds

≤
∫ t

0

m∑
j=0

χI j (aηξ )(s)

∣∣∣∣〈η, U0(a j )(s)ξ〉 − d

ds
W (aηξ )(s)

∣∣∣∣ ds

≤
∫ t

0

m∑
j=0

χI j (aηξ ) K
P
ηξ (s)‖a0 − a j‖ηξ ds ≤ Dηξ Mηξ (t) (3.6)

where

Mηξ (t) =
∫ t

0
K P

ηξ (s)ds
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and
m∑

j=0

χI j (aηξ )(s) = χI (s) = 1, I =
m⋃

j=0

I j (aηξ ) = [0, T ].

Let t ∈ [0, T ] be fixed and let j ∈ {0, 1, 2 · · · m} be such that t ∈ I j (aηξ ). Then by
the definition of W1(aηξ )(t),

d

(
d

dt
W1(aηξ )(t), P(t , Y (a)(t))(ηξ )

)
= d(〈η, U0(a j )(t)ξ〉, P(t , Y (a)(t))(η, ξ ))

≤ ρ(P(t , Y (a j )(t))(η, ξ ), P(t , Y (a)(t))(η, ξ ))

≤ K P
ηξ (t)‖Y (a j )(t) − Y (a)(t)‖ηξ

= K P
ηξ (t)‖a j − a‖ηξ = K P

ηξ (t)|aηξ , j − aηξ |
≤ 2−3θ K P

ηξ (3.7)

We remark here that inequality (3.7) holds since aηξ ∈ B(aηξ , j , δ(aηξ , j )) for some
0 ≤ j ≤ m and |aηξ − aηξ , j | < δ(aηξ , j ) ≤ 2−3θ .

The estimate holds on the whole interval [0, T ] since it is independent of j .
Similarly, we have for t ∈ I j (aηξ ),

d

(
d

dt
W1(aηξ )(t), P(t , Y1(a)(t))(η, ξ )

)

≤ d

(
d

dt
W1(aηξ )(t), P(t , Y (a)(t))(η, ξ )

)
+ ρ (P(t , Y (a)(t))(η, ξ ), P(t , Y1(a)(t))(η, ξ ))

≤ K P
ηξ (t)2−3θ + K P

ηξ (t)‖Y (a)(t) − Y1(a)(t)‖ηξ

≤ K P
ηξ (t)[2−3θ + Dηξ Mηξ (t)] (3.8)

Inequality (3.8) follows from the following estimates:

‖Y (a)(t) − Y1(a)(t)‖ηξ = |W (aηξ )(t) − W1(aηξ )(t)|

≤
∫ t

0

∣∣∣∣ d

ds
W (aηξ )(s) − 〈η, U0(a j )(s)ξ〉

∣∣∣∣ ds

≤
∫ t

0
K P

ηξ (s)‖a0 − a j‖ηξ ≤ Dηξ Mηξ (t)

by (3.2)
In general, we claim that for n = 1, 2 · · ·, we can define sequences of maps:

Yn : A → wac(Ã) and Wn : A(η, ξ ) → wac(Ã)(η, ξ ) such that Wn is continuous
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on A(η, ξ ) and for each a ∈ A, aηξ ∈ A(η, ξ ), Yn(a) lies in L1
loc(Ã), Yn(a0) = �0

and Wn(aηξ ,0) = �ηξ ,0.
Moreover,

(i)
∫ t

0

∣∣∣∣ d

ds
Wn(aηξ )(s) − d

ds
Wn−1(aηξ )(s)

∣∣∣∣ds ≤ Dηξ

Mn
ηξ (t)

n!

+ θ2−n−1

[
2−2 +

n∑
i=1

(2Mηξ (t))i

i!

]

(ii) d

(
d

dt
Wn(aηξ )(t), P(t , Yn−1(a)(t))(η, ξ )

)
≤ θ2−n−2 K P

ηξ (t)

(iii) d

(
d

dt
Wn(aηξ )(t), P(t , Yn(a)(t))(η, ξ )

)
≤ Dηξ K P

ηξ (t)
Mn

ηξ (t)

n!

+ θ2−n−1 K P
ηξ (t)

n∑
i=0

(2Mηξ (t))i

i!
.

(iv) There exists maps Rηξ ,n : [0, T ] → R+ lying in L1
loc([0, T ]) such that for

every ε > 0, there exists δ > 0, such that |a′
ηξ − aηξ | < δ implies that∣∣∣∣ d

dt
Wn(aηξ )(t) − d

dt
Wn(a′

ηξ )(t)

∣∣∣∣ ≤ Rηξ ,n(t)χE (t),

for some subset E of [0, T ] with measure µ(E) ≤ ε.

Our claim (i)–(iv) above hold for the case n = 1 from the definition of the maps Y1

and W1 and by applying Proposition (2.1). Assume that the claim holds for n − 1,
we show that it holds for n as follows:

Choose Un−1(a)(t)(η, ξ ) ∈ P(t , Yn−1(a)(t))(η, ξ ) such that∣∣∣∣ d

dt
Wn−1(aηξ )(t) − Un−1(a)(t)(η, ξ )

∣∣∣∣
= d

[
d

dt
Wn−1(aηξ )(t), P(t , Yn−1(a)(t))(η, ξ )

]

≤ Dηξ K P
ηξ (t)

Mn−1
ηξ (t)

(n − 1)!
+ θ2−n K P

ηξ (t)
n−1∑
i=0

(2Mηξ (t))i

i!
. (3.9)

As (η, ξ ) → Un−1(a)(t)(η, ξ ) is a sesquilinear form and Yn−1(a) is adapted, then
there exists an adapted process Un−1(a) : [0, T ] → Ã such that

Un−1(a)(t)(η, ξ ) = 〈η, (Un−1(a)(t))ξ〉.
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By inequality (3.9) and the assumption that Yn−1(a) lies in L1
loc(Ã), then the process

Un−1(a) ∈ L1
loc(Ã) for each a ∈ A.

By (iv) of the recursive hypothesis, there exists δn > 0 such that |a′
ηξ − aηξ | <

δn implies ∣∣∣∣ d

dt
Wn−1(a′

ηξ )(t) − d

dt
Wn−1(aηξ )(t)

∣∣∣∣ ≤ Rηξ ,n−1(t)χE (t) (3.10)

for some E ⊆ [0, T ] satisfying∫
E

Rηξ ,n−1(t)dt ≤ θ2−n−3. (3.11)

Next we define for any a ∈ A, aηξ ∈ A(η, ξ )

δn(aηξ ) = min

{
δn , θ2−n−3,

|aηξ − aηξ ,0|
2

}
, aηξ �= aηξ ,0

and

δn(aηξ ,0) = min{δn , θ2−n−3}.
We cover the set A(η, ξ ) with the balls B(aηξ , δn(aηξ )) and let B(an

ηξ , j ,
δn(an

ηξ , j )), j = 0, 1, 2 · · · mn , be a finite subcover, where we have put an
ηξ ,0 = aηξ ,0.

We remark that by the inequality∣∣aηξ ,0 − an
ηξ , j

∣∣ >
1

2

∣∣aηξ ,0 − an
ηξ , j

∣∣
the point aηξ ,0 belongs only to the ball B(aηξ ,0, δn(aηξ ,0)). Let {Pn

j (·)} j=mn

j=0 be a
continuous partition of unity subordinate to this covering and define the following
intervals:

I n
0 (aηξ ) = [

0, T Pn
0 (aηξ )

]
and for j > 0,

I n
j (aηξ ) = [

T
(
Pn

0 (aηξ ) + · · · + Pn
j−1(aηξ

))
, T (P0(aηξ ) + · · · + Pn

j

(
aηξ

)
)
]
.

Define the maps Yn , Wn as follows:

Yn(a)(t) = a +
∫ t

0

mn∑
j=0

χI n
j (aηξ )(s)Un−1

(
an

j

)
(s)ds (3.12)

Wn(aηξ )(t) = aηξ +
∫ t

0

mn∑
j=0

χI n
j (aηξ )(s)〈η, Un−1

(
an

j

)
(s)ξ〉ds (3.13)

Since Yn−1(a0) = �0 and by the properties of the process Un−1(a) and the
fact that I n

0 (aηξ ,o) = [0, T ], we have

Yn(a0) = �0
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and by Proposition (2.1), the map Wn : A(η, ξ ) → wac(Ã)(η, ξ ) given by (3.12) is
continuous and Wn(aηξ ,0) = �ηξ ,0. Furthermore, we have the following estimates:

∫ t

0

∣∣∣∣ d

ds
Wn(aηξ )(s) − d

ds
Wn−1(aηξ )(s)

∣∣∣∣ ds

≤
∫ t

0

∑
j

χI n
j (aηξ )(s)

∣∣∣∣〈η, Un−1
(
an

j

)
(s)ξ〉 − d

ds
Wn−1(aηξ )(s)

∣∣∣∣ ds

≤
∫ t

0

∑
j

χI n
j (aηξ )(s)

∣∣∣∣〈η, Un−1
(
an

j

)
(s)ξ〉 − d

ds
Wn−1

(
an

ηξ , j

)
(s)

∣∣∣∣ ds

+
∫ t

0

∑
j

χI n
j (aηξ )(s)

∣∣∣∣ d

ds
Wn−1

(
an

ηξ , j

)
(s) − d

ds
Wn−1(aηξ )(s)

∣∣∣∣ ds

≤
∫ t

0

(∑
j

χI n
j (aηξ )(s)

) [
Dηξ K P

ηξ (t)
Mn−1

ηξ (t)

n!
+ θ2−n K P

ηξ (t)
n−1∑
i=0

(2Mηξ (t))i

i!

]

+
∫ t

0

(∑
j

χI n
j (aηξ

(s)

)
Rηξ ,n−1(s)χE (s)ds

≤ Dηξ

Mn
ηξ (t)

n!
+ θ2−n−1

n∑
i=1

(2Mηξ (t)i

i!
+ θ2−n−3.

Hence, item (i) of the recursive hypothesis holds for all n. Next we fix t ∈ [0, T ]
and let j be such that t ∈ I j (aηξ ). Then by (3.11) and (3.12),

d

(
d

dt
Wn(aηξ )(t), P(t , Yn−1(a)(t))(η, ξ )

)

= d
(〈η, Un−1(an

j )(t)ξ〉, P(t , Yn−1(a)(t))(η, ξ )
)

≤ ρ
(
P(t , Yn−1(an

j )(t))(η, ξ ), P(t , Yn−1(a)(t))(η, ξ )
)

≤ K P
ηξ (t)‖Yn−1(an

j )(t) − Yn−1(a)(t)‖ηξ . (3.14)

By applying (3.10), we have

‖Yn−1(an
j )(t) − Yn−1(a)(t)‖ηξ

≤ |an
ηξ , j − aηξ +

∫ t

0
| d

ds
Wn−1

(
an

ηξ , j

)
(s) − d

ds
Wn−1(aηξ )(s)|ds

≤ θ2−n−3 + θ2−n−3 = θ2−n−2 (3.15)



2056 Ayoola

Combining inequalities (3.13) and (3.14), we have

d

(
d

dt
Wn(aηξ )(t), P(t , Yn−1(a)(t))(η, ξ )

)
≤ θ2−n−2 K P

ηξ (t).

The estimate is independent of j and so it holds on the whole interval [0, T ]. This
proves item (ii) of our claim. To establish item (iii) we proceed as follows:

d

(
d

dt
Wn(aηξ )(t), P(t , Yn(a)(t))(η, ξ )

)

≤ d

(
d

dt
Wn(aηξ )(t), P(t , Yn−1(a)(t))(η, ξ )

)
+ρ (P(t , Yn−1(a)(t))(η, ξ ), P(t , Yn(a)(t))(η, ξ ))

≤ θ2−n−2 K P
ηξ (t) + K P

ηξ (t)‖Yn−1(a)(t) − Yn(a)(t)‖ηξ

≤ θ2−n−2 K P
ηξ (t) + K P

ηξ (t)
∫ t

0

∣∣∣∣ d

ds
Wn−1(aηξ )(s) − d

ds
Wn(aηξ )(s)

∣∣∣∣ ds

≤ K P
ηξ (t)

[
θ2−n−2 + Dηξ

Mn
ηξ (t)

n!
+ θ2−n−1

n∑
i=1

(2Mηξ (t))i

i!
+ θ2−n−3

]
,

by (i) and (ii)

≤ Dηξ K P
ηξ (t)

Mn
ηξ (t)

n!
+ θ2−n−1 K P

ηξ (t)
n∑

i=0

(2Mηξ (t))i

i!
,

(obtained by applying the inequality; θ2−n−2 + θ2−n−3 ≤ θ2−n−1).
The last estimate proves item (iii) of our claim. Item (iv) of the claim is

established by the application of Proposition (2.1) to the map Wn : A(η, ξ ) →
wac(Ã)(η, ξ ).

From item (i), we have

|Yn(a) − Yn−1(a)|ηξ

= ‖Yn(a)(0) − Yn−1(a)(0)‖ηξ +
∫ T

0

∣∣∣∣ d

dt
〈η, Yn(a)(t)ξ〉

− d

dt
〈η, Yn−1(a)(t)ξ〉

∣∣∣∣dt

= |Wn(aηξ )(0) − Wn−1(aηξ )(0)| +
∫ T

0

∣∣∣∣ d

ds
Wn(aηξ )(s) − d

ds
Wn−1(aηξ )(s)

∣∣∣∣ ds

≤ Dηξ

Mn
ηξ (T )

n!
+ θ2−n−1e2Mηξ (T ) (3.16)
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It follows by (3.15) that the sequence {Yn(a)} is uniformly Cauchy in wac(Ã)
and thus converges uniformly to a map � : A → wac(Ã). Again,

lim
n→∞ Wn(aηξ )(t) = lim

n→∞〈η, Yn(a)(t)ξ〉 = 〈η, �(a)(t)ξ〉

The map aηξ → 〈η, �(a)(t)ξ〉 is continuous since the map aηξ → Wn(aηξ ) is con-
tinuous for each n.

As the stochastic process �(a) is the limit of a sequence of adapted weakly
absolutely continuous processes in L1

loc(Ã), �(a) lies in Ad(Ã)wac
⋂

L1
loc(Ã) and

�(a0) = �0.
By (iii) of the recursive formula,

d

(
d

dt
〈η, �(a)(t)ξ〉, P(t , �(a)(t))(η, ξ )

)
= 0.

Therefore

�(a) ∈ S(T )(a), 〈η, �(a)(·)ξ〉 ∈ S(T )(a)(η, ξ ), 〈η, �(a0)(·)ξ〉 = �ηξ ,o. �

The following corollaries show that the set-map S(T )(a)(η, ξ ) and the set of
complex numbers R(T )(a)(η, ξ ) associated with the reachable set of QSDI (1.1) at
the final time T admit some continuous parameterizations.

Corollary 3.2. There exists a subspace U of the space of all continuous maps
from A(η, ξ ) into wac(Ã)(η, ξ ) and a continuous function

g : A(η, ξ ) × U → wac(Ã)(η, ξ )

such that for any a ∈ A, aηξ ∈ A(η, ξ ),

g(aηξ , U) = S(T )(a)(η, ξ ).

Proof: We remark first that the space wac(Ã)(η, ξ ) is a subspace of the space
AC[0, T ] of all absolutely continuous complex valued functions on [0, T ], a sep-
arable Banach space with the usual sup norm.

We put X to be the set of continuous maps from the compact set A(η, ξ ) into
wac(Ã)(η, ξ ) and define the subspace U of X by

U = {W : A(η, ξ ) → wac(Ã)(η, ξ )/W is continuous and W (aηξ ) ∈ S(T )(a)

(η, ξ )}
the set of all continuous selections from the map aηξ → S(T )(a)(η, ξ ).

Define the map g by

g(aηξ , W ) = W (aηξ ).
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Then by the continuity of each W ∈ U , g is continuous and by Theorem 3.1 above,

g(aηξ , U) = S(T )(a)(η, ξ ).
�

Corollary 3.3. There exists a subset U of the space of all continuous maps from
A(η, ξ ) into wac(Ã)(η, ξ ) and a continuous function

h : A(η, ξ ) × U → C

such that for any a ∈ A, aηξ ∈ A(η, ξ )

h(aηξ , U) = R(T )(a)(η, ξ ).

Proof: Adopting the notation employed in the proof of Corollary 3.2, we define
the map h by

h(aηξ , W ) = W (aηξ )(T ).

Since

W (aηξ ) ∈ S(T )(a)(η, ξ ),

then W (aηξ )(·) is of the form

W (aηξ )(·) = 〈η, W̃ (·)ξ〉
for some W̃ ∈ S(T )(a). Hence, we have

W (aηξ )(T ) = 〈η, W̃ (T )ξ〉 ∈ R(T )(a)(η, ξ ).

By Theorem 3.1, it follows that

h(aηξ , U) = R(T )(a)(η, ξ ). �
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